EGC442
Class Notes
2/24/2023

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

int fact (int n)

{

if (n<1)return 1;

}

Argument nin $a0
Result in $vO

ﬁb\(60\5/\
R > B &

else return n * fact(n - 1);

|¥k¥2¥3* F — — — " XN- l)FV\

gp/ ¥&XM¥
3 |

SP—

7')(/ Y

FN\=

I
Nt —

l

Y XY

Non-Leaf Procedure Example

fact:
addi $sp. $sp, -8 # adjust stack for 2 items
SW $ra, 4($sp) # save return address
SW $a0, O($sp) # save argu K N=0 = §t0 =
slti $10, $a0, 1 # test forn <f
beg $t0, $zero, L1/ S ce V‘%I
addi $v0, $zero, 1 #if so, resultis 1
addi $sp, $sp. 8 # pop 2items from stack
r $ra # and return

L1: Clddi $a0, $a0, -1 # else decrement n

al fact # recursive call
VY yylw $a0, 0($sp) # restore original n

Iw $ra, 4($sp) # andreturn address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result

r $ra # and return

/’}f@DVt‘HAWl |

Shift Lef]

Multiplicand

G (Shifi Right) A(()(\ A% /M 3
N/ Multiplier ﬁ :
64-bit ALU ;

/ 32 bitV

Write 32bits e
Product Control :
64 bits -) - ; : — fsasssssssssssssssssssssasamsanas .

Al a0l WL h W J
Multiplicand I 9. Ql I?l [3
2Ol B,
32 bits - r . e

Multiplier | gl Ri PAAIANF——B
___Y_ p ? Shift Right r 1

32-bit ALU 32 bits 1LALLAAND Pl | nF e
S .
: LJJQ:' A3 T T~ B
Pl’Oduct E v v v v v v 3

64 bits

Y

Multiplicand

32 bits

\

I
32-bit ALU i

r

R

Product

Shift right
Write

64 bits

Control
test

d) The refined multiplication hardware halves the width of the
Multiplicand register from 64-bits to 32-bits.

® True
O False

b) The Multiplier register is removed and placed inside of the
register.

@® Product
O Multiplicand

Q{)« The ALU adds the 64-bit Product and 32-bit Multiplicand,
and then stores the result into the Product register.

O True
® False

\\

Correct

The refined multiplication hardware shifts the Product
register right 1 bit in each step instead of shifting the
Multiplicand register left 1 bit in each step. Because the
Multiplicand is no longer shifted left, the register width
can be reduced.

Correct

The multiplier is placed in the right half of the Product
register. As the Product register is shifted to the right to
allocate room for the accumulated sum of intermediate
products, the least significant bit of the multiplier is no
longer needed and can be shifted out of the register.

Correct

The ALU adds the upper 32-bits of the Product with the
32-bit Multiplicand. The result is then stored in the upper
32-bits of the Product register. The Product register is
then shifted right 1 bit before the next step.

R — Shift Left

Multiplicand —
GAhIE Shift Right
m—mmm \/ /}/g. [| Vit
Initial values 1100 0000 0101 0000 0000 64-bit ALU e)
1 1: 0 = No operation 1100_ 0000 0101 0000 0000 /
2: Shift left Multiplicand 1100 0000 1{}1(_1~ 0000 0000
3: Shift right Multiplier 0110 0000 1010 0000 0000 Product
2 1:0= A (a) oPeldhov| 0110 | 00001010 | 0000 0000 64 bits
2: Shift left Multiplicand 0110 o)y ¥ 0000 0000
3. Shift n'gm Wlligher 1 | adey) | 9991 O19C T 0000 0000
3 N> %) =Ml | 01 | P9°1 Aloo| oot 0100 @
2: smn left Multiplicand P o)l oo101000 0001 0100
3: Shift right Multiplier 0001 0010 1000 | 00010100 e o G =%
4 1a: 1 = Prod = Prod + Mcand| 0001 0010 1000 |9/} () / Joo
. 1a. Add multiplicand to
2: Shift left Multiplicand 0001 0101 0000 e
3: Shift right Multiplier 0000 0101 0000 rauull{ln Product register
P4
2. Shift the Multiplicand
) register left 1 bit
3. Shift the Multiplier
register right 1 bit
No: < 32 repetitions

Yes: 32 repelitions

M (Y
32 bits

N A

=y A

Y

tALU /

-

D0 o gl | Ol oy

64 bits

— — =K

H
OQ/Q/B O\OXJ ooll [foO

I 2. Shift the Product register right 1 bit

1) The multiplication hardware supports signed
multiplication.

® True
O False

2) The 32-bit registers, called Hi and Lo, combine to form a
64-bit product register.

® True
O False

3) The multiply (mult) instruction ignores overflow, while the
multiply unsigned (multu) instruction detects overflow.

O True
® False

Correct

The multiplier and multiplicand are first converted to
positive numbers, and then multiplied using the same
multiplication hardware. The product is negated if the
multiplier and multiplicand signs disagree.

Correct

The move from low (mflo) and move from high (mfhi)
instructions can be used to transfer the contents of
registers Hi and Lo to a general-purpose register.

Correct

Both instructions ignore overflow, so the software must
detect overflow.

® | ike scientific notation

» +987.02 x 10°

® Representation:

= more bits for exponent increases range

»[EEE 754 floating point stand

Floating Point (a brief look)

In binary
1. XXXXXXX, X 299V

—

® sign, exponent, significand: (—1)%¢" x significand x 2exponent

® more bits for significand gives more accuracy

ard:

® single precision: | sign bit |8 bit exponent

23 bit significand

® double precision: | sign bit |11 bit exponent

52 bit significand

%&) A calculation that leads to a number being too large to
represent is called :

® overflow
O underflow
QO a fraction

é) Increasing the size of the used to represent a
floating-point number impacts the number's precision.

@ fraction
O exponent

G A precision floating-point number is represented with
two MIPS words.

O single
@® double

1 \\

Correct

Floating-point numbers are represented with a fixed
number of bits, thus can only represent a fixed range of
numbers. Floating-point arithmetic can lead to numbers
that are too large to represent given the number of bits
available.

Correct

Floating-point numbers are represented using a fixed
number of bits, so compromise is needed between the
size of the fraction and the size of the exponent.

Correct

A double precision floating-point number is represented
with two MIPS words, or 64-bits. The exponent is
increased to 11-bits to enable representation of a larger
range of values; the fraction is increased to 52-bits to
enable greater precision.

11t WO

.1000 0000 0000 0000 0000 0000

Rewrite as a fraction

The number is rewritten as a fraction whose denominator is a power of 2.

Rewrite as a binary number

3ien becomes 114y0. The fraction contains 22 in the denominator, so the binary point is
moved left 3 positions and results in 0.07 T4y

Rewrite as normalized scientific notation

The binary point is moved to the right until a non-zero digit appears to the left of the
binary point.

S=7?

A sign bit of 0 results in a positive number.

(8= (1P=1

Exponent =?

(Exponent - 127) = -2

Exponent = 125

Fraction =7

The leading 1-bit of a normalized binary numbers is implicit, so only the values to the

right of the binary point are needed.

IEEE 754 binary single precision representation

(-1)° x (1 +.1000 0000 0000 0000 0000

0000) X 2(1 25-127)

The sign bit, exponent, and fraction are plugged into the basic single
precision floating point equation.

Correct

Correct

Correct

Correct

Correct

Correct

Correct

Rewrite as a fraction

The number is rewritten as a fraction whose denominator is a power of 2.

Rewrite as a binary number
1111!‘\';-.1
=2 or 0.1111y,

15;., becomes 1111,,,,. The fraction contains 24 in the denominator, so the binary point
is maved left 4 positions and results in 0.111 14,0

Rewrite as normalized scientific notation

The binary point is moved ta the right until a non-zero digit appears to the left of the
binary point.

§=7?

A sign bit of 1 results in a negative number.

()= (1) =-1

Exponent = ?

(Exponent - 1023) = -1
Exponent = 1022
The exponent bias for double precision is 1023.

Fraction =7

1110 0000 ... 0000 The leading 1-bit of a normalized binary numbers is implicit, so only the values to the
right of the binary point are needed. The fraction is represented with 52 bits, only some
of the bits are shown.

IEEE 754 binary double precision representation
(-131 x Q +.1110 0000 ... 0000) x
2(1022 - 1023) The sign bit, exponent, and fraction are plugged into the basic double precision
floating point equation.

Correct

Correct

Correct

Correct

Correct

Correct

Correct

7. Convert the single precision binary floating-point representation to decimal.

250320 42 |

31|30 [20]28[27]26 [25| 24| 23|22 21|20 10[18] 17[16] 15[14|13 [12| 11] 10] o |8 [7|6 [s |4 [3[2]1]0
0|1 o 0 0 0 0 1 1 1 0o 1 o 0 0o 0 0O 0 0O 0O 0O O OO OO O O O O o0 o

